Bottom-up parsing

Top-Down Parsing:

e Start at the root of the tree and grow towards leaves.

* Pick a production and try to match the input.

 We may need to backtrack if a bad choice is made.
 Some grammars are backtrack-free (predictive parsing).

Bottom-Up Parsing

Goal: Given a grammar, G, construct a parse tree for a string (i.e.,

sentence) by starting at the leaves and working to the root (i.e., by
working from the input sentence back toward the start symbol S).

Recall: the point of parsing is to construct a derivation:

$=0,=0,=0,=...=0, ;=sentence

To derive o_, from 0, we match some rhs b in 0, then replace b with its
corresponding lhs, A. This is called a reduction (it assumes A—b).

The parse tree is the result of the tokens and the reductions.

Example:

Consider the grammar below and the input string abbcde.
1. Goal—>aABe

g) A—abe Sentential Form | Production | Position
: |b abbcde 3 2
4. B—d a A bcde 2 4
a A de 4 3
aABe 1 4
Goal - -

Example:

Consider the grammar below and the input string abbcbcde.

1. Goal—aABe _ _ _
2. A>Abc Sentential Form | Production | Position
3. |b

4. B—od

o0 dWDMNDR

Input string: abcde

Goal—>ABB
A—Abc
| b

Sententlal Form

Production

Position

Finding Reductions

» \What are we trying to find?

— Asubstring bthat matches the right-side of a production that occurs as one step
In the rightmost derivation. Informally, this substring is called a handle.

« Formally, a handle of a right-sentential form o iIs a pair <A—>b,k>
where A—b € Pand ks the position in d of £’s rightmost symbol.

(right-sentential form. a sentential form that occurs In some rightmost derivation).

— Because 0 Is a right-sentential form, the substring to the right of a handle

contains only terminal symbols. Therefore, the parser doesn’t need to scan past
the handle.

— If a grammar is unambiguous, then every right-sentential form has a unique
handle (sketch of proof by definition: if unambiguous then rightmost
derivation is unique; then there is unique production at each step to produce a
sentential form; then there is a unique position at which the rule is applied;
hence, unique handle).

If we can find those handles, we can build a derivation!

Motivating Example

Given the grammar of the left-hand side below, find a rightmost
derivation for x — 2*y (starting from Goal there is only one, the
grammar is not ambiguous!). In each step, identify the handle.

. Goal - Expr Production | Sentential Form Handle

. Expr — Expr + Term - | Goal

| Expr— Term 1 |Expr 11

/ Term 3 Expr — Term 3,3

. Term — Term * Factor

| Term / Factor

/ Factor

. Factor — number

© O~NOURAWN

/id

Problem: given the sentence x — 2*y, find the handles!

12-Dec-21 COMP36512 Lecture 9

A basic bottom-up parser

« The process of discovering a handle is called handle pruning.
» To construct a rightmost derivation, apply the simple algorithm:
for /=nto 1, step -1
find the handle <A—>b,k>;1n J;
replace Hwith Ato generate o;,
(heea’s 2n steps, where n Is the length of the derivation)

* One implementation is based on using a stack to hold grammar
symbols and an input buffer to hold the string to be parsed. Four
operations apply:

— shift: next input is shifted (pushed) onto the top of the stack
— reduce: right-end of the handle is on the top of the stack; locate
left-end of the handle within the stack; pop handle off stack and
push appropriate non-terminal left-hand-side symbol.
— accept: terminate parsing and signal success.
— error: call an error recovery routine.
12-Dec-21 COMP36512 Lecture 9

Example: x-2*y

Stack Input Handle | Action
$ id—num *id| None Shift
$id —num*id| 9,1 |Reduce9
$ Factor —num*id| 7,1 |Reduce?
$ Term —num¥*id| 4,1 Reduce 4
$ Expr —num *id| None Shift
$ Expr — num *id | None Shift
$ Expr — num *id| 8,3 |Reduce8
$ Expr — Factor *id 7,3 Reduce 7
$ Expr — Term *id| None Shift
$ Expr — Term * id| None Shift
$ Expr — Term * id 9,5 Reduce 9
$ Expr — Term * Factor 5,5 Reduce 5
$ Expr — Term 3,3 |Reduce3
$ Expr 1,1 | Reducel
$ Goal none Accept

. Goal — Expr

. Expr - Expr + Term

| Expr — Term

. / Term

. Term — Term * Factor
| Term / Factor

. | Factor

. Factor — number

[id

— 1. Shift until top of stack is the right end of the handle
— 2. Find the left end of the handle and reduce
(5 shifts, 9 reduces, 1 accept)

12-Dec-21

COMP36512 Lecture 9

10

12-Dec;

Example: x/4+2*y

Stack

Input

Handle

Action

21

COMP36512 Lec

ture 9

1. Goal — Expr

2. Expr — Expr + Term

| Expr — Term

/ Term

. Term — Term * Factor
| Term / Factor
| Factor

. Factor — number

/id

O 0N W

11

What can go wrong?

(think about the steps with an exclamation mark in the previous slide)

« Shift/reduce conflicts: the parser cannot decide whether to
shift or to reduce.

Example: the dangling-else grammar; usually due to ambiguous
grammars.

Solution: a) modify the grammar; b) resolve in favour of a shift.

» Reduce/reduce conflicts: the parser cannot decide which of
several reductions to make.

Example: id (id, id) ; reduction is dependent on whether the
first id refers to array or function.

May be difficult to tackle.

Key to efficient bottom-up parsing.: the handle-finding mechanism.

LR(1) grammars

(a beautiful example of applying theory to solve a complex problem in practice)

A grammar is LR(1) if, given a rightmost derivation, we can:

(1) isolate the handle of each right-sentential form, and

(11) determine the production by which to reduce, by scanning the
sentential form from left-to-right, going at most 1 symbol beyond the
right-end of the handle.

LR(1) grammars

« LR(1) grammars are widely used to construct (automatically) efficient and
flexible parsers:

— Virtually all context-free programming language constructs can be expressed in an LR(1)
form.

— LR grammars are the most general grammars parsable by a non-backtracking, shift-reduce
parser (deterministic CFGS).

— Parsers can be implemented in time proportional to tokens+reductions.

— LR parsers detect an error as soon as possible in a left-to-right scan of the input.

L stands for left-to-right scanning of the input; R for constructing a rightmost derivation in reverse; 1 for the number of
input symbols for lookahead.

LR Parsing: Background

« Read tokens from an input buffer (same as with shift-
reduce parsers)

« Add an extra state information after each symbol in the
stack. The state summarises the information contained in
the stack below It. The stack would look like:

$S,ExprS,-S,num S,

LR Parsing: Background

» Use a table that consists of two parts:

— action[state_on_top_of stack, input_symbol]: returns one of: shift s (push a
symbol and a state); reduce by a rule; accept; error.

— goto[state_on_top of stack,non_terminal _symbol]: returns a new state to
push onto the stack after a reduction.

The Big Picture: Prelude to what follows

* LR(1) parsers are table-driven, shift-reduce parsers that use
a limited right context for handle recognition.

» They can be built by hand; perfect to automate too!
« Summary: Bottom-up parsing is more powerful!

source able-drive |.R.
code +(_Scanner tokens Pary

*The table encodes
grammatical knowledge

grammar;@_.@@ It is used to determine
Generato the shift-reduce parsing

decision.

17

Example

Consider the following grammar and tables:

_ STATE ACTION GOTO
1. Goal — CatNoise eof miau CatNoise
- - - 0 i Shift 2 1
2. CatNorse — Caqulse miau : accept | Shift 3
3. [/ miau 2 Reduce 3 | Reduce 3
3 Reduce 2 | Reduce 2
Example 1: (input string miau)
Stack Input Action Note that there cannot
$s0 miau eof | Shift 2 be a syntax error with
$sOmiaus2 |eof Reduce 3 CatNoise, because it has
$ sO CatNoise sl | eof Accept

Example 2: (input string miau miau)

only 1 terminal symbol.
“miau wooft”’ 1s a lexical
problem, not a syntax

error!

eof Is a convention for

Stack Input Action
$s0 miau miau eof | Shift 2
$ sO miau s2 miau eof Reduce 3
$ sO CatNoise sl miau eof Shift 3
$ sO CatNoise s1 miau s3 | eof Reduce 2
$ sO CatNoise sl eof accept

end-of-file (=end of input)

18

Example: the expression grammar

1. Goal — soEXpr s

2. EXpr — soEXPr s1+ ss Term sio

3. | sOEXPr si—s7Term sii
4, [soTerm

5. Term — soTerm sz * ssfactor siz
6. | soTerm sz / soFactor si3
7. [soFactor s3

8. Factor — sonumber s4
9. / 50/0’ S5

19

Example: the expression grammar

© © N O U A W N R

. Goal — Expr

. Expr — Expr + Term

| Expr— Term
/ Term

. Term — Term * Factor
/ Term / Factor
/ Factor

. Factor — number
/id

Parse: a) X+2*Y
b)X/4 —Y*5

STA ACTION GOTO
TE eof + — * / num | id | Expr | Term | Factor
0 S4 | S5 1 2 3
1 | Acc | S6 | S7

2 R4 | R4 R4|S8|S9

3 R7 | R7|R7|R7|RY

4 R8 R8| R8|R8|RS8

5 R9 | R9| R9|R9|R9

§) S4 | S5 10 3
7 S4 | S5 11 3
8 S4 | S5 12
9 S4 | S5 13
10 | R2 |R2 | R2|S8|S9

11 | R3 | R3| R3|S8|S9

12 | R5 |R5| R5 | R5|R5

13 | R6 |R6 | R6 | R6 | R6

20

STA ACTION GOTO
TE eof + — * / num id | Expr | Term | Factor
0 S4 | S5 1 2 3
1 Acc | S6 | S7
2 R4 | R4| R4|S8|S9
3 R7 | R7 R7|R7|R7
4 R8 | R8| R8| R8|RS8
5 R9 | R9| R9 | R9 R9
6 S4 | S5 10 3
7 S4 | S5 11 3
8 S4 | S5 12
9 S4 | S5 13
10 R2 |R2| R2|S8|S9
11 R3 | R3|R3|S8|S9
12 R5 | R5| R5| R5|R5
13 R6 | R6| R6 | R6|R6
1. Goal — Expr
2. Expr — Expr + Term
3. | Expr— Term
4. / Term
5. Term —» Term * Factor
0. | Term / Factor
7. / Factor
8. Factor — number
0. /id
a) X+2*Y

21

: ACTION GOTO
Stack Input Action S-l-r? eof + - * / num id | Expr | Term | Factor
$s0 X/4-Y*5 S5 0 S4 |S5| 1 2 3
1 Acc | S6 | S7
P$s0Xs5 [4-Y*5 R9 2 R4 | R4/ R4 S8 |S9
3 |R7|R7|R7|R7|R7
$soFactors3 14-Y*5 R7 4 R8 | R8 R8| R8RS
5 R9|R9|R9|/R9|RY9
$s0Terms?2 [4-Y*5 S9 6 S4 | S5 10 3
7 S4 | S5 11 3
$s0Terms2/s9 4-Y*5 S4 8 S4 | S5 12
9 S4 | S5 13
$soTerms2/s94sa -Y*5 R8 10 | R2 |R2 | R2 S8 |S9
11 R3I | R3|R3|S8/|S9
$soTerms2/soFactorsi3 -Y*5 R6 12 | RS |R5 | R5 | R5 | R5
13 R6 | R6| R6 | R6 | R6
$s0Terms2 -Y*5 R4
$SOEXpI’Sl -Y*5 S7 * 1. Goal = Epr
X/ — 2. Expr — Expr + Term
$SOEXprsi1-s7 Y*5 S5 b) 4 Y 5 P. p.
3 | Expr— Term
- *
$SOEXprsi1-s7Yss 5 R9 4 | Term
$s0Exprsi-s7Factorss *5 R7 5. Term — Term * Factor
$S0Exprs1-s7Terms2 *5 S8 6 | Term / Factor
$SOEXprs1-s7Terms2*ss 5 S4 7 / Factor
8. Factor — number
$SOEXprs1-s7Terms2*sg5s4 Eof R8 _
9 [id
$SOEXprsi-s7Terms2*sgFactorsi2 Eof R5
$S0Exprs1-s7Termsi1 Eof R3
$S0Exprs1 Eof Acc

22

Goal—Expr

Expr— Term-Expr
Expr—Term
Term—Factor*1erm
Term—Factor
Factor—id

Example:

STA ACTION GOTO

TE | id - * eof | Expr | Term | Factor
0 | S4 1 2 3
1 Accept
2 S5 R3
3 R5/S6| R5
4 R6|/ R6| RG6
5 | S4 7 2 3
6 | S4 8 3
7 R2
8 R4 R4

23

STA ACTION GOTO
TE | id | - * eof | Expr | Term | Factor
0 | S4 1 2 3
1 Accept
2 S5 R 3
3 R5|S6| RS
4 R6|R6| R6
5 S4 7 2 3
6 | S4 8 3
7 R 2
8 R 4 R 4
Goal—Expr
Expr— Term-Expr
Expr—Term
Term—Factor*Term
Term—Factor
Factor—»id

X—-Y*5

24

STA ACTION GOTO
TE | id | - * eof | Expr | Term | Factor
0 | S4 1 2 3
1 Accept
2 S5 R 3
3 R5|S6| RS
4 R6|R6| R6
5 S4 7 2 3
6 | S4 8 3
7 R 2
8 R 4 R 4
Goal—»Expr
Expr— Term-Expr
Expr—Term
Term—Factor*Term
Term—Factor
Factor—id

X-Y/5

Example : LR(1) Table Generation

1. Goal — CatNoise

2. CatNoise — CatNoise miau

3. / miau

26

Example

Goal—»Expr

Expr— Term-Expr
Expr—Term
Term—Factor*Term
Term—»Factor
Factor—»1d

: LR(1) Table Generation
STA ACTION GOTO
TE

27

1. Goal — Expr
2. Expr — Expr + Term

3. | Expr— Term
4. / Term

5. Term — Term * Factor
6. | Term / Factor
7. | Factor

8. Factor — number

9. Jid

28

Summary

Top-Down Recursive Descent: Pros: Fast, Good locality, Simple,
good error-handling. Cons: Hand-coded, high-maintenance.

LR(1): Pros: Fast, deterministic languages, automatable. Cons:
large working sets, poor error messages.

What is left to study?
— Checking for context-sensitive properties
— Laying out the abstractions for programs & procedures.
— Generating code for the target machine.
— Generating good code for the target machine.

29

